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Abstract Burn-in is an engineering method extenswely used fo screen out infant mortality
Jailure defects. Previous studies have attempted to determine the optimum burn-in time and cost
for a device or a system. However, for the mathematical model, many assumptions are
inappropriate due to practical concerns, and for the cost model, the requived costs are difficult to
Jfind. How to effectively determine the optimal burn-in time and cost has perplexed manufacturers
Jor quite some time. In the actual manufacturing process, a new electronic product is always
extended from an old product, called the base product. By adopting the relationship between new
product and base product, this study presents a neural network-based approach to delermine the
optimal burn-in time and cost without any assumptions. A case study of the production of a
switch mode rectifier demonstrates the effectiveness of the proposed approach.

1. Introduction

Defects associated with electronic devices can be categorized mainly as patent
defects and latent defects. Patent defects do not meet specifications and are
readily detectable by inspection or functional testing that includes
environmental stress screening. Latent defects cannot be detected by inspection
or functional testing until they are gradually transformed into patent defects by
environmental stress screening. Burn-in is designed to detect patent infant
failure in the electronics industry. The failure rate of an electronic device starts
high, decreases rapidly during the infant mortality period, and then stabilizes
in the steady-state period. Since infant mortality failure critically affects the
overall reliability of devices or systems, determining the burn-in time and cost
to effectively screen latent defects in infant mortality is important. This issue
has received considerable interest (Kuo ef al, 1998).

Stewart and Johnson (1972) developed a cost model using Bayesian decision
theory to decide optimal burn-in time and replacement policy. Plesser and Field
(1977) used a cost model to obtain an optimal burn-in time for repairable
electronic systems. Meanwhile, Nguyen and Nurthy (1982) derived the optimal
burn-in time for products sold under warranty. Furthermore, Chou and Tang
(1992), and Mi (1996) determined the optimum burn-in time by using a cost
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IJQRM model, with the costs including set-up costs, direct burn-in cost, repair cost, and
18,5 warranty cost. Koh et al (1995) utilized temperature stress as the accelerated
condition to obtain effective burn-in time. Meanwhile, Chien and Kuo (1996)
presented a nonparametric approach that can estimate the optimal system
burn-in time without complex parameter estimation and curve fittings. Chien
and Kuo (1997) proposed a Bayesian nonparametric approach to determine
550 system burn-in time. Finally, Yan and English (1997) applied environmental
stress screening to construct an integrated cost model and determine the
optimal burn-in time.

Previous approaches, including curve fitting for a failure model, cost for
optimal burn-in time model and environmental stress model, are ineffective in
determining optimal burn-in time and cost for practical operations. In the curve
fitting for a failure model or an environmental stress model, many assumptions
are too broad and, thus, are inappropriate for many cases. Also, although many
researchers have adopted Weibull distribution to model the failure rate of
electronic components, this is only an approximation. If other distributions,
such as lognormal or Gamma distributions, are used for parametric analysis,
the overall level of the system failure becomes untractable. In the cost model,
these costs are difficult to estimate and in practice more attention may be paid
to data collection, with the results usually being sensitive to the assumed costs.
Additionally, in the electronics industry, the product line of a firm always
extends from the base products, called the product family. In a product family,
each product shares very similar characteristics. Obtaining the optimal burn-in
time and cost for each product via traditional methods is tedious and
monotonous.

When an electronic product enters mass production, its optimal burn-in time
and cost must be known. This study presents a neural network-based approach
to enhance the analysis of burn-in time and cost. Neural networks are highly
parallel computation systems which can learn from examples. Neural networks
can be used to construct the desired mapping function without requiring any
assumptions concerning the functional form of the relationship between
predictors and response (Stern,1996). This capability enables them to be
applied in manufacturing. Neural networks are more easily comprehended and
implemented than other statistical approaches. This study also performs a case
study of the production of a switch mode rectifier and compares it with the
statistical approach, to examine the effectiveness of the proposed approach.

2. Burn-in

Burn-in is used to screen infant mortality failure of electronic devices. Jensen
and Petersen (1990) described burn-in as a rapidly changing technology and
production method used to cope with an increasing awareness of reliability.
Most manufacturers have to investigate reliability screening to minimize early
failures in the field, and thus minimize guarantee and service expenditure. Yan
and English (1997) defined burn-in as a subset of environment-stress-screening
that screens out infant failure by combining appropriate electrical and thermal
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environments in a shortened time span. Kuo ef al. (1998) described burn-inas  Optimal burn-in

being completed when reasonable certainty established that all the weak
devices have failed, thus leaving the remaining devices in a reliable state. Some
problems associated with burn-in in practice include:

« Should burn-in be performed at the product, module, or component
levels?

Should type of burn-in performed differ in a steady and a changeable
environment?

- Under what environment conditions should burn-in be performed?

How long should the burn-in process continue, how reliable should it be
(expressed by failure rate), and what are the total costs?

Figure 1 depicts a systematic burn-in procedure based on the above
description. This procedure consists of four phases. The first phase is to
determine the burn-in policy decision. This decision is always based on
customer or engineer experience. According to Kuo et @l (1998), an electronic
device can be categorized into three levels: systems, subsystems and
components. Meanwhile, there are eight possible choices of burn-in policy: no
burn-in, component only, subsystem only, system only, component and
subsystem, component and system, subsystem and system, and all levels burn-
in. In practice, system burn-in is always too expensive, but can remove more
incompatibility than lower-level burn-ins. Once the burn-in policy is
determined, the next phase is to select a feasible burn-in type. There are three
distinct types of burn-in: test during burn-in, static burn-in and dynamic burn-
in. Test during burn-in applies an electronic test after a long burn-in process. It
is frequently used for DRAM and SRAM processes. Static burn-in applies
stresses to the samples at a fixed level or in an elevated pattern. Meanwhile,
dynamic burn-in exercises samples by stressing them to simulate real
operating environments. Static burn-in is always more effective than dynamic
burn-in for defects resulting from corrosion or contamination. This method is
very appropriate for IC and control process unit devices. After burn-in type is

Burn-in policy decision

v
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and cost
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Figure 1.
Burn-in procedure
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[JQRM determined, an effective burn-in condition should be determined since it will
18,5 affect burn-in performance. Finally, the last phase is to determine the optimal
burn-in time and burn-in cost, which is the purpose of this study.

3. Neural networks

A neural network 1s a computing system, comprising many processing elements
552 connected between layers. Each processing element (node) has an output signal
that fans out along connections to the other processing elements. Meanwhile,
each connection is assigned a relative weight. The output of a node depends on
the specified threshold and the transfer function. Learning and recall are two
major processes of the neural network, where the learning process can modify
the connecting weights and the recall process involves understanding how the
network creates a response at the output layer by processing a signal through
the whole network. Two types of learning are commonly considered: supervised
and unsupervised learning. For supervised learning, a set of training input
vectors with a corresponding set of target vectors is trained to adjust the
weights in a neural network. For unsupervised learning, a set of input vectors is
proposed, but no target vectors are specified. Generally, the clustering problem
frequently employs the unsupervised learning and the prediction or mapping
problem usually employs the supervised learning.

Back-propagation neural network (Figure 2) is the most popular of the
several well-known supervised learning networks such as learning vector
quantization and counter-propagation neural networks. This study adopts the
back-propagation neural network due to its ability to map a complex, non-
linear relationship between inputs and corresponding outputs (Funahashi,
1989). A typical back-propagation network consists of three or more layers,
including an input layer, one or more hidden layers and an output layer. Figure
1 depicts the topology of a back-propagation network with three layers. Back-
propagation learning employs a gradient-descent algorithm to minimize the
mean-square error between the target data and the predictions of the neural
network (Rumelhart and McClelland, 1989). The training data set is initially
collected to develop a back-propagation neural network model. Using a

Output

Figure 2.

Topology of the
back-propagation neural
network
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supervised learning rule the data set comprises input and actual output (target). Optimal burn-in
The gradient-descent learning algorithm enables a network to enhance its time and cost
performance by self-learning. The training of a back-propagation network

involves three stages: the feed-forward of the input training data, the

calculation and back-propagation of the associated error, and the adjustment of

the connected weights.

553

4. Proposed approach
The following describes a detailed procedure for determining optimal burn-in
time for an electronic product.

Computation of the correlation ratio
Step 1: Identify the base product and new product to be studied.

Step 2: Let the correlation ratio (CR) of the base product be 1. Compute the
CR of the new product as follows:
CC)I(’I(‘

sy

where
CC,e1o = the total number of critical components in the new product.
CCy,se = the total number of critical components in the base product.

Optimization based on the base product data

Step 3: Develop a BP network model (Model 1) to obtain the relationship
between (burn-in time, correlation ratio) and (burn-in cost, failure
rate).

Step 4. Present all possible burn-in times (1~24 hours) and correlation
ratios to the Model 1 and compute the estimated burn-in cost and
failure rate.

Step 5: Obtain the optimal burn-in time by comparing the estimated data
obtained in step 4, that is, find the time with the smallest estimated
burn-in cost and failure rate.

Modifications based on practical considerations

Step 6: Develop a BP network model (Model 2) to obtain the relationship
between (burn-in cost, failure rate, correlation ratio) and burn-in
time.

Step 7- Obtain the estimated burn-in time by inputting the desired burn-in
cost, failure rate and correlation ratio into Model 2.

This study initially identified the base product and the new product to be
studied. The base product is the technological core for a product family, and the

—
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JQRM new product 1s a modification of the base product. Some kind of relationship
185 exists between the base product and the new product. Since the number of
critical components will influence the reliability of a product or module, this
study uses the ratio of critical components between the new product and the
base product (called correlation ratio) to represent this relationship. Letting the
correlation ratio of the base product equal 1, the correlation ratio for the new
554 product can then be computed.

Previously, burn-in was completed when failure reached predetermined
value or time, and this value or time was always set according to customer or
engineer experience. By collecting the required data, however, this study can
use Model 1 to obtain the estimated burn-in cost and failure rate. Subsequently,
comparing these estimated data will reveal the optimal burn-in time.
Additionally, to control the burn-in cost and failure rate below a criterion,
Model 2 can be used.

5. A case study

Rectifiers are critical products for the telecommunication power systems
industry. They convert AC power input into DC power output and supply for
wireless and wireline networks. A rectifier in a telecommunication network
operation must be highly reliable. Providing a stable power impacts the
rectifier manufacturer. Thus, burn-in must be completed before the rectifier is
shipped to the customer. Previously, the burn-in time and cost were usually
determined by an experienced engineer or gathered based on mass production.
However, this approach was ineffective in overcoming infant mortality failure
of rectifiers and always increased burn-in process costs. The proposed
approach can resolve this problem and obtain the optimal burn-in time and
cost.

In the production of a rectifier, defects are divided into two types: patent
defects and latent defects. Patent defect can be easily detected visually or by
auto-test equipment. Meanwhile, latent defects are only detectable by
environmental stress screening over time. Usually, burn-in is utilized to detect
latent defects in the rectifier industry.

The product family of Delta’s 3000 series rectifier includes four models: ESR-
48/50AA, ESR-24/100AA, ESR-24/100AB, and ESR-24/100ABA. ESR-48/
50AA, ESR-24/100AA and ESR-24/100AB have long been mass produced. To
apply the proposed approach, the burn-in time, burn-in cost, correlation ratio,
and the corresponding failure rate were collected (from January to December of
1998), and Table I summarizes those results.

Now, ESR-24/100ABA is a new product, and a pilot-run is proceeded. Owing
to ESR-48/50A A, ESR-24/100AB and ESR-24/100ABA being extended from
ESR-24/100AA, the correlation ratio of the base product, ESR-24/100AA, is
allowed to be 1. From step 2 of the proposed procedure, the correlation ratio can
be calculated as follows: ESR-48/50AA vs. ESR-24/100AA is 0.833, ESR-24/
100A vs. ESR-24/100AA is 1.25 and ESR-24/100ABA vs. ESR-24/100AA is
1.33.
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ESR-24/100AA ESR-48/50AA ESR-24/100AB
Failure Burn-in Failure Burn-in Failure Burn-in
Burn-in rate cost rate cost rate cost
time (hr) (%) CR (NTS) (%) CR (NTS) (%) CR (NTS)
1 0.00722 1 2842 000371 0.833 169.6 0.00667 1.25 422.3
& 0.00125 1 280.3 0.000741 0.833 1746  0.00133 1.25 4295
3 0.00139 1 2740 000111 0.833 1732 0.00133 1:25 436.6
4 0.00069 1 2799 0.00037 0.833 184.7 0.00667 1.25 388.3
5 0.00056 1 2881 0.00111  0.833 183.3 0.00667 1.25 339.9
6 0.00083 1 291.6 0.00037 0.833 1948 0.00667 1125 291.5
7 0.00097 1 2926 0.00037 0.833 206.3 0.00667 195 A0}
8 0.00167 1 2814 0.000741 0.833 211.3 0.00133 1125 250.3
9 0.00208 1 2629 0.00037 0.833 2229 0.002 1.25 250.5
10 0.00167 1 251.7 0.000741 0.833 2279 0.00133 125 257.7
11 0.00056 1 2599 0 0.833 2459 0.000667 1.25 ZTLT
12 0.00042 1 2706 0.00037 0.833 2574 0.00133 1.25 2789
13 0.00056 1 2788 0.00037 0.833 269 0.000667 1.25 293
14 0.00028 1 2919 0 0.833 287 0 1.25 314
15 0.00014 1 3074 0 0.833 305 0 1325 335
16 0 1 3254 0 0.833 323 0 1.25 356
17 0 1 3434 0 0.833 341 0 1125 377
18 0.00014 1 359 0 0.833 359 0 1.25 398
19 0 1 377 0 0.833 377 0 1.25 419
20 0 1 395 0 0.833 395 0 1.25 440
21 0 1 413 0 0.833 413 0 1.25 461
22 0 1 431 0 0.833 431 0 1.25 482
23 0 1 449 0 0.833 449 0 1.25 503
24 0 0.83 467 0 0.833 467 0 1.25 524

Note: The burn-in cost is cumulative and includes fixed cost, variable cost, and repair and
warranty cost

Optimal burn-in
time and cost

955

Table I.
The data of base
products

At this stage, the aim is to discover the effective burn-in time and cost before
the new product enters mass production. Through the proposed approach, the
data (shown in Table I) are directly used to develop two back-propagation
networks. The trained networks can be used to obtain the relationship between
(burn-in time, correlation ratio) and (burn-in cost, failure rate), and also the
relationship between (burn-in cost, failure rate, correlation ratio) and burn-in
time. This study randomly selects 60 training patterns and 12 testing patterns
from Table I. For Model 1, burn-in time and correlation ratio serve as the
network inputs, while burn-in cost and the corresponding failure rate are the
outputs. Meanwhile, for Model 2, burn-in cost, correlation ratio and failure rate
are the network inputs, and burn-in time is the output. The required network
model is developed using a neural network package software, Qnet97 (1997).
The convergence criterion employed in the network training is the root of mean
square error (RMSE). Tables IT and III provide several options for the network
architecture; the structure 2-4-2 improves performance for Model 1, and the
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[JQRM

structure 3-6-1 improves performance for Model 2. Figures 3 and 4 display the

18,5 performance vs. training epochs for the networks 2-4-2 and 3-6-1, respectively.
Meanwhile, the above two models also can be fitted by the stepwise method
of the statistical regression. For Model 1, two regression functions were formed
as follows:
556 Burn-in cost =19.456593+8.99308*burn-in-time+187.730355* correlation-ratio.
Failure rate = —0.000443-0.000156*burn-in-time+0.003335* correlation-ratio.
The mean square errors of the above two functions are 3027.47 and 0.00000202,
respectively. The average of the RMSE of these two regression functions is
higher than shown in Table II; therefore, the neural network method is better
Architecture RMSE (training) RMSE (testing)
2-3-2 0.069525 0.121068
2-4-2 0.049213 0.034822
Table II. 2-5-2 0.068697 0.071861
The performance of 2-6-2 0.064026 0.093281
five different networks 2-7-2 0.063517 0.099602
Architecture RMSE (training) RMSE (testing)
3-4-1 0.057889 0.075474
3-5-1 0.056801 0.070549
3-6-1 0.056594 0.053956
Table III. 3-7-1 0.056254 0.079615
The performance of six 3-8-1 0.052744 0.082769
different networks 3-9-1 0.054347 0.129000
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than the regression method in terms of RMSE. Similarly, for Model 2, the
regression function can be formed as follows:

Burn-in time = 1.7416-1610*failure-rate—4.4525*
correlation-ratio +0.05233*burn-in-cost,

with RMSE value 3.742. This value is higher than those in Table III. The neural
network method also performs better than the regression method.
Consequently, the trained networks are employed to perform the required
estimation.

The burn-in cost and failure rate can be estimated using Model 1. Table IV
lists these data, while Figures 5 and 6 plot them. From Figure 6, to obtain the
lowest cost, the effective burn-in time can be given at nine hours, reducing the
corresponding failure rate to 0.00245. However, to control the burn-in cost
under NT$300 and the failure rate under 500ppm, Model 2 can be used to
estimate the effective burn-in time, yielding 13.35 hours. Previously, the initial
burn-in time was always fixed at 24 hours, and when the corresponding failure

Burn-in time (hr) 1 2 3 4 5 6
Failure rate 0.00562 0.00010 0.00037 0.00554 0.00818 0.00829
Burn-in cost 398.2 463.3 4751 4457 3959 347.1
Burn-in time (hr) T 8 9 10 11 12
Failure rate 0.00743 0.00493 0.00245 0.00122 0.00070 0.00047
Burn-in cost 307.7 282.7 27811 2744 282.5 294.6
Burn-in time (hr) 13 14 15 16 17 18
Failure rate 0.00035 0.00027 0.00022 0.00017 0.00012 0.00007
Burn-in cost 309.4 326.1 344 .4 363.9 384.2 404.9
Burn-in time (hr) 19 20 21 22 23 24
Failure rate 0.00002 0 0 0 0 0
Burn-in cost 425.5 4455 464.6 482.3 498.3 512.6

Optimal burn-in
time and cost

557

Figure 4.

RMSE vs. number of
training epochs for
model 2

Table IV.

Estimation of burn-in
cost and failure rate for
ESR-24/100ABA
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Figure 5.

Failure rate vs. burn-in
time for ESR-24/
100ABA

Figure 6.

Burn-in cost vs. burn-in
time for ESR-24/
100ABA

Table V.
Implementation results
of ESR-48/100ABA
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rate improved the burn-in time gradually reduced. Over five months (from July
to November of 1999), the new burn-in time was set at 14 hours, and Table V
summarizes the results. This shows that the proposed approach is very
effective in practice.

5. Conclusion

Burn-in is an effective means of screening latent defects in the electronics
industry. How to determine an effective burn-in time and burn-in cost has
concerned manufacturers for quite some time. Although many burn-in models
have been developed, none have been practical. Previously, the optimal burn-in

July August September October November
Monthly 1999 1999 1999 1999 1999
Failure rate 0.00067 0.00033 0.00033 0 0
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time and cost for an electronic product were determined by customer or Optimal burn-in
engineer experience, which was time consuming and expensive. This study time and cost
presents an effective neural network-based approach to determine optimal
burn-in time and cost. The proposed approach can effectively screen out latent
defects before a product is shipped to the customer. A case study of the
production of rectifier was performed and compared with the statistical
approach. According to those results, the proposed procedure yields a very low 559
failure rate after burn-in.
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